报告题目:Hole Probabilities of Random Zeros on Compact Riemann Surfaces
报告人: 谢松晏 研究员(中国科学院数学与系统科学研究院)
时间:2025年4月17日(周四)15:20-16:55
地点:理科楼A112
摘要: We establish quantitative estimates for the convergence rate of hole probabilities - the likelihood that fixed regions on compact Riemann surfaces contain no zeros of random holomorphic sections. Our analysis combines techniques from complex geometry and probability theory, including Zelditch's density formula, Abel-Jacobi theory, and Fekete point theory. A key innovation is the development of a novel perturbation method that enables precise control of these probabilities. This work represents a significant advance in understanding the spatial distribution of random zeros in complex geometry. (Joint work with Hao Wu, Nanjing University; arXiv:2406.19114)
报告人简介:谢松晏,中国科学院数学与系统科学研究院研究员。本科毕业于清华大学,博士毕业于法国巴黎十一大,研究领域为复几何,特别是复双曲性和Nevanlinna理论。解决了Debarre猜想,独立发表于Inventiones Mathematics。
邀请人:薛金鑫