English 清华大学 旧版入口 人才招聘

论坛讲座

【系综合学术报告】&【荷思系友报告】

【系综合学术报告】&【荷思系友报告】2025年第11 || Data, Modelling, and Inference for Future Energy and Resource Exploration

报告题目:Data, Modelling, and Inference for Future Energy and Resource Exploration

时间:20251017日(周五) 下午1:30

地点:清华大学数学系理科楼A304 ,报告人在美国,腾讯会议:781 564 634

报告人:童平(南洋理工大学数学系 长聘副教授

摘要:Global demand for energy and natural resources is set to surge in the coming decades, driven by population growth, industrial expansion such as the rise of AI, and the shift toward cleaner energy systems. This growing demand calls for innovative technologies to discover and secure future energy and resource supplies. In this talk, I will present advanced modeling and computational methods developed to analyze noisy, high-dimensional surface data and infer subsurface structures for energy and resource exploration. The discussion will cover the adjoint-state method as a foundation for modern inverse problem solutions, the use of AI to reveal subtle patterns in complex data, and case studies on geothermal potential in Singapore and California.

报告人简介:童平,南洋理工大学数学系长聘副教授、新加坡地球观测所研究员,同时担任模拟与仿真理学硕士项目主任。2007年毕业于北京师范大学本科,2012年在清华大学获得博士学位。20129月至20168月,他先后在多伦多大学和斯坦福大学从事博士后研究。他的主要研究方向包括反问题理论、地震成像、电法成像与重力反演,以及这些方法在能源资源勘探、大地震孕育环境研究、地球深部结构与过程等领域的应用。迄今已发表SCI论文80余篇,其中以第一作者或通讯作者身份在 PNASGeophysical Research LettersJournal of Geophysical Research: Solid Earth 等期刊发表论文40余篇。他目前主持多项科研项目,涵盖反演成像新技术、地热资源勘查、近地工程探测,以及人工智能技术的开发与应用。

主持人:杨顶辉


【系综合学术报告】2025年第30 || On Ramsey-Turan problems for hypergraphs

报告题目:On Ramsey-Turan problems for hypergraphs

时间:20251017日(周五) 下午2:30

地点:清华大学数学系理科楼A304

报告人:韩杰(北京理工大学数学与统计学院 教授)

摘要:Ramsey-Turan problems have been an important class of problems in extremal combinatorics, with deep connections to (discrete) probability theory and geometry. In this talk we will survey some exciting developments in the past decade and introduce some recent progress on Ramsey-Turan problems for hypergraphs. This includes joint work with Suyun Jiang, Hong Liu and Yuzhen Qi.

报告人简介:韩杰,北京理工大学数学与统计学院教授。研究方向为图论与组合数学及计算机理论,超图中的子图问题。2015 年于美国佐治亚州立大学获博士学位,2018 -2020 年于美国罗德岛大学任 tenure-track 助理教授,获美国 Simons Foundation 基金资助(2019-2024)。2021 年获国家高层次青年人才计划,加入北京理工大学数学与统计学院。在 Transactions of the American Mathematical SocietyJournal of Combinatorial Theory, Series B等期刊发表学术论文 60 余篇

主持人:陆玫


【系综合学术报告】&【荷思系友报告】2025年第12 || Bounded Generation: a diophantine approximation approach

报告题目:Bounded Generation: a diophantine approximation approach

时间:20251017日(周五) 下午3:30

地点:清华大学数学系理科楼A304

报告人:任金波(厦门大学数学科学学院 教授)

摘要:A group Γ is said to have the bounded generation property (BG) if it can be written as a product of finitely many cyclic subgroups. Being a purely combinatorial notion, (BG)) has close relation with many group theoretical problems including semi-simple rigidity, Kazhdans property (T) and Serres Congruence Subgroup Problem.

This talk is devoted to explaining how to use tools from Diophantine approximation to prove that an infinite S-arithmetic subgroup of an anisotropic linear algebraic group G over a number field K never has (BG). Moreover, I will introduce a corresponding Manin type asymptotic counting result about (BG) sets.

This is joint work with Corvaja, Demeio, Rapinchuk and Zannier.

报告人简介:任金波,厦门大学数学科学学院教授。2012年获得清华大学数学科学系学士学位,2015年获得荷兰莱顿大学和法国巴黎十一大学联合硕士学位,2018年获得法国巴黎十一大学博士学位。曾在美国弗吉尼亚大学和普林斯顿高等研究所做博士后。研究集中于丢番图问题和算术群的性质,其工作发表在 Invent. Math., Compositio Math. 等期刊上。

主持人:扶磊