主要从事结构图论、极值图论、图谱理论以及图论在信息科学、化学科学等方面的研究,研究成果包括应用插点法给出控 制圈存在及图具有可圈性的充分性;利用有限交换环的乘法群,构造了一类新的代数 Cayley 图;利用有限域的相关知识, 定义了一类新的 Wenger 图,为研究复杂性理论及编码密码提供理论依据。
代表作:
[1]Zequn LV, Mei Lu and Yi Zhang, Perfect Matching and Hamilton Tight Cycle Decomposition of Complete r-Partite k-Uniform Hypergraphs, SIAM J. DISCRETE MATH, Vol. 36, No. 1 (2022), 241-251.
[2]Zhen He and Mei Lu, Saturation number of tKl,l,l in the complete tripartite graph, The electronic journal of combinatorics, 28(4) (2021), #P4.2.
[3]Zequn Lv, Mei Lu and Chunqiu Fang, A note on 3‐partite graphs without 4‐cycles, J. Combin Des. 2020;28:753-757.
[4]Yi Zhang, Mei Lu, Matching in 3-uniform hypergraphs, Discrete Mathematics 342 (2019) 1731-1737.
[5]Yi Zhang, Yi Zhao, Mei Lu, Vertex degree sums for perfect matchings in 3-uniform hypergraphs, The electronic journal of combinatorics 25(3) (2018), #P3.45