English 清华大学 旧版入口 人才招聘

邱宇

  • 教授
  • 电话:
  • 邮箱:q-y@tsinghua.edu.cn

基本信息

2008-2011 英国巴斯大学 博士 (导师:A.D.King);2004-2008 北京大学 数学科学学院 本科;现为清华大学数学中心/系 教授(博导)。


工作履历

2020-至今 清华大学数学中心/系 教授

2018-2020 清华大学数学中心/系 副教授

2016-2018 香港中文大学 研究助理教授

2013-2016 挪威科技大学 博士后

2012-2012 加拿大主教大学 博士后


研究领域

代数表示论与几何拓扑。例如三角范畴(Calabi-Yau范畴、Fukaya范畴)上的稳定条件,辫子群/映射类群,模空间,丛(cluster)理论…等等。动机来自于(同调)镜像理论等。

所授课程




奖励与荣誉

2016年国际代数表示论会议奖

Citation: The ICRA Award 2016 is given to Yu Qiu who made important contributions in the representation theory of algebras on the topological structure of Bridgeland stability conditions, and a sequence of studies about Calabi-Yau and cluster categories.


学术成果

  • 预印本:

1. Contractibility and total semi-stability conditions of Euclidean quivers, with Xiaoting Zhang,
arxiv:2501.16903

2. From mutation to X-evolution: flows and foliations on cluster complexes, with Liheng Tang,
arxiv:2501.15756

3. Verdier quotients of Calabi-Yau categories from quivers with potential, with Anna Barbieri,
arxiv:2411.00207

4. Perverse schobers, stability conditions and quadratic differentials II: relative graded Brauer graph algebras, with Merlin Christ and Fabian Haiden,
arxiv:2407.00154

5. Dg enhanced orbit categories and applications, with Li Fan and Bernhard Keller,
arxiv:2405.00093

6. A geometric realization of Koszul duality for graded gentle algebras, with Zixu Li and Yu Zhou,
aXiv:2403.15190

7. Moduli spaces of quadratic differentials: Abel-Jacobi map and deformation,
aXiv:2403.10265

8. Quadratic Differentials as Stability Conditions of Graded Skew-gentle Algebras, with Suiqi Lu and Dongjian Wu,
aXiv:2310.20709

9. Perverse schobers, stability conditions and quadratic differentials I, with Merlin Christ and Fabian Haiden,
arxiv:2303.18249

10. Two geometric models for graded skew-gentle algebras, with Chao Zhang and Yu Zhou,
arxiv:2212.10369

11. Graded decorated marked surfaces: Calabi-Yau-X categories of gentle algebras, with Akishi Ikeda and Yu Zhou,
arXiv:2006.00009

  • 发表论文:

  1. On the focus order of planar polynomial differential equations, with Jiazhong Yang,
    J. Diff. Equations, 246 (2009), 3361-3379.

  2. Ext-quivers of hearts of A-type and the orientation of associahedron,
    J. Algebra, 393 (2013), 60-70. (arXiv:1202.6325)

  3. Exchange graphs and Ext quivers, with Alastair King,
    Adv. Math. 285 (2015), 1106–1154. (arXiv:1109.2924)

  4. Stability conditions and quantum dilogarithm identities for Dynkin quivers,
    Adv. Math. 269 (2015), 220-264. (arXiv:1111.1010)

  5. Tagged mapping class group: Auslander-Reiten translations, with Thomas Brüstle,
    Math. Zeit. 279 (2015), 1103-1120. (arXiv:1212.0007)

  6. C-sortable words as green mutation sequences,
    Proc. Lond. Math. Soc. 111 (2015), 1052-1070. (arXiv:1205.0034)

  7. Decorated marked surfaces: Spherical twists versus braid twists,
    Math. Ann. 365 (2016), 595-633. (arXiv:1407.0806).

  8. Cluster categories for marked surfaces: punctured case, with Yu Zhou,
    Compos. Math. 153 (2017), 1779-1819. (arXiv:1311.0010)

  9. Decorated marked surfaces (Part B): Topological realizations,
    Math. Zeit. 288 (2018) 39–53.

  10. Contractible stability spaces and faithful braid group actions, with Jon Woolf,
    Geom. & Topol. 22 (2018) 3701–3760. (arXiv:1407.5986)

  11. DMS~II: Intersection numbers and dimensions of Homs, with Yu Zhou,
    Trans. Amer. Math. Soc. 372(2019) 635–660. (arXiv:1411.4003)

  12. The braid group for a quiver with superpotential,
    Sci. China. Math. 62 (2019) 1241–1256. (arXiv:1712.09585)

  13. Stability conditions and A2 quivers, with Tom Bridgeland and Tom Sutherland,
    Adv. Math. 365 (2020), 107049. (arXiv:1406.2566)

  14. Finite presentations for spherical/braid twist groups, with Yu Zhou,
    J. Topology . 13 (2020) 501-538. (arXiv:1703.10053)

  15. Cluster exchange groupoids and framed quadratic differentials, with Alastair King,
    Invent. Math. 220 (2020) 479–523. (arXiv:1805.00030)

  16. DMS~III: The derived category of a decorated marked surface, with Aslak Buan and Yu Zhou,
    Int. Math. Res. Notices 2021 (2021) 12967-12992. (arXiv:1804.00094)

  17. Global dimension function on stability conditions and Gepner equations,
    Math. Zeit. 303 (2023) No.11. (arXiv:1807.00010)

  18. q-Stability conditions on Calabi-Yau-X categories, with Akishi IKeda,
    Compos. Math. 159 (2023), 1347–1386. (arXiv:1807.00469)

  19. Contractibility of space of stability conditions on the projective plane via global dimension function with Yu-Wei Fan, Chunyi Li, and Wanmin Liu,
    Math. Res. Letter 30 (2023), 51–87. (arXiv:2001.11984)

  20. Frobenius morphisms and stability conditions, with Wen Chang,
    Publ. Res. Inst. Math. Sci. 60 (2024), 271–303. (arXiv:1210.0243)

  21. Cluster braid groups of Coxeter-Dynkin diagrams, with Zhe Han and Ping He,
    J. Comb. Theory (A), 208 (2024), 105935. (arXiv:2310.02871)

  22. Geometric model for module categories of Dynkin quivers via hearts of total stability conditions, with Wen Chang and Xiaoting Zhang,
    J. Algebra 638 (2024), 57-89. (arxiv:2208.00073)

  23. Quadratic differentials as stability conditions: collapsing subsurfaces, with Anna Barbieri, Martin Möller and Jeonghoon So,
    J. reine angew. Math. (Crelle’s Journal) 810 (2024), 49-95. (arxiv:2212.08433)

  24. Contractible flow of stability conditions via global dimension function.
    J. Diff. Geom. 129 (2025), 491-521. (arXiv:2008.00282)

  25. q-Stability conditions via q-quadratic differentials, with Akishi Ikeda,
    Memoirs of Amer. Math. Soc. 308 (2025), No. 1557. (arXiv:1812.00010)

  26. Topological model for q-deformed rational number and categorification, with Li Fan,
    Rev. Mat. Iberoam., 41 (2025), 1337–1366. (arxiv:2306.00063)

  27. Geometric classification of totally stable stability spaces, with Xiaoting Zhang,
    Math. Zeit. 309 (2025) No.58. (arxiv:2202.00092)

  28. Fusion-stable structures on triangulated categories, with Xiaoting Zhang,
    Selecta Math. 31 (2025) No.50. (aXiv:2310.02917)

  • 会议论文:

1. Topological structure of spaces of stability conditions and top. Fukaya type categories, Proceedings of the International Consortium of Chinese Mathematicians (2017) 521–538, Int. Press, Boston, MA, 2020. (arXiv:1806.00010)

2. Decorated Marked Surfaces: Calabi-Yau categories and related topics,
Proceeding of the 51st Symposium on Ring Theory and Rep. Theory, 129–134, Symp. Ring Theory Represent. Theory Organ. Comm., Shizuoka, 2019. (arXiv:1812.00008)


人才培养